A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation
نویسندگان
چکیده
The finite element methodology has become a standard framework for approximating the solution to the Poisson-Boltzmann equation in many biological applications. In this article, we examine the numerical efficacy of least-squares finite element methods for the linearized form of the equations. In particular, we highlight the utility of a first-order form, noting optimality, control of the flux variables, and flexibility in the formulation, including the choice of elements. We explore the impact of weighting and the choice of elements on conditioning and adaptive refinement. In a series of numerical experiments, we compare the finite element methods when applied to the problem of computing the solvation free energy for realistic molecules of varying size.
منابع مشابه
A weighted adaptive least-squares finite element method for the Poisson–Boltzmann equation
The finite element methodology has become a standard framework for approximating the solution to the Poisson–Boltzmann equation in many biological applications. In this article, we examine the numerical efficacy of least-squares finite element methods for the linearized form of the equations. In particular, we highlight the utility of a first-order form, noting optimality, control of the flux v...
متن کاملA first-order system least-squares finite element method for the Poisson-Boltzmann equation
The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation, we propose a system that yields a tractable leas...
متن کاملSimulation of Electroosmosis Using a Meshless Finite Point Method
A Finite Point Method (FPM) based on a weighted least squares interpolation is presented for the simulation of electroosmotic transport in capillaries. This method requires no mesh and involves no Galerkin-type integration, making it more computationally efficient than the traditional finite element method. The FPM has been employed to solve the non-linear Poisson-Boltzmann equation for charge ...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملThe Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation
A widely used electrostatics model in the biomolecular modeling community, the nonlinear Poisson–Boltzmann equation, along with its finite element approximation, are analyzed in this paper. A regularized Poisson–Boltzmann equation is introduced as an auxiliary problem, making it possible to study the original nonlinear equation with delta distribution sources. A priori error estimates for the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012